CHAPTER 1 Introduction 18

1.1 IC Process Technology and Marching to Moore’s Law 18
 1.1.1 Planar Process 18
 1.1.2 Increasing Complexity in IC Technology 19
 1.1.3 Device Generation Scaling and Lithography Requirements 21
 1.1.4 Critical Issues in Lithography and Pattern Transfer 23
 1.1.5 The Product Design Cycle 24

1.2 Role of Modeling and Simulation 25
 1.2.1 Examples of Uses in Unit Process Development 26
 1.2.2 Process Integration 26
 1.2.3 Growing Opportunities for Modeling and Simulation 27
 1.2.4 Basic Ingredients and Uses of Process Simulators 28

1.3 Evolution of Process Simulation 29
 1.3.1 Functional Grouping of Simulators 29
 1.3.2 Emergence of Topography Simulators 30
 1.3.3 Brief History of Topography and Lithography Simulators 30

1.4 Organization and Viewpoint of this Monograph 33
1.5 References 34

CHAPTER 2 Visualizing Device Structure From Layout and Process Flow 35

2.1 Role of Process Simulation From the Layout 35
2.2 The Device Fabrication Process Sequence 38
2.3 Structures in a Double Level Metal CMOS Process 40
2.4 Design Aid From Process Flow Simulation 42
2.5 Process Technology Issues and Test Structures 45
2.6 Process Flow Issues in Designing the Alignment Methodology 50
 2.6.1 Role of Alignment 50
 2.6.2 Design of Alignment Marks 52
2.7 Layout Standards 54
2.8 Elementary Process Models for Lateral Effects 55
2.9 Linking Rigorous Process Simulators 58
 2.9.1 Need for Links to Rigorous process Simulation 58
 2.9.2 Data Structures Physical Representations 59
2.10 Summary 62
2.11 References 63

CHAPTER 3 Topography Effects in Deposition and Etching 65

3.1 Four Aspects Common to Etching and Deposition 65
3.2 Modeling Profile Time-Evolution 69
3.3 Segment Motion and Vector Addition of Rates 74
CHAPTER 4 Characterization of Deposition and Etching 95

4.1 Designing Deposition Processes 95
4.2 Designing Plasma Etching Processes 97
4.3 Planarization 100
4.4 Integration Versus Unit Process Perfection 102
4.5 Unanticipated Gotchas 106
4.6 Characterizing Advanced Processes 108
4.7 Summary 115
4.8 References 115

CHAPTER 5 The Lithography Process and Basic Simulation Models 117

5.1 The lithography process 117
5.2 Imaging 122
5.2.1 Imaging with Scanning Beams 122
5.2.2 Imaging with Shadow/Proximity Printing 123
5.2.3 Images in optical projection printing 124
5.2.4 Propagation Vector Space View of Imaging 131
5.2.5 Images of Small Features in Optical Projection Printing 134
5.3 Substrate Interactions in Imaging 139
5.4 Resist Reactions 142
5.4.1 Exposure-Bleaching and the Latent Image 142
5.4.2 Development-Etching 145
5.5 Simulation of Resist Line-Edge Profiles 147
5.6 Meeting the Lithography Challenges 151
5.6.1 Role of the Recording Media 152
5.6.2 Wafer Reflectivity Reduction 153
5.6.3 Super-Resolution and Optical Proximity Correction Techniques 154
5.6.4 Beyond Optical 156
5.7 Summary 156
5.8 References 156
7.10 References 212
7.11 List of Figures 213